

ACKNOWLEDGMENT

The author wishes to thank several members of the National Standards Laboratory: I. G. Morgan contributed helpful suggestions; the paper tape punch control and Serializer are general-purpose data recording units designed by G. J. A. Cassidy and J. Duruz; the noncontacting air gauges were originated by J. Field; and much of the equipment was constructed by C. Ella.

REFERENCES

- [1] G. F. Engen and R. W. Beatty, "Microwave reflectometer techniques," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-7, no. 3, pp. 351-355, July 1959.
- [2] J. Willis and N. K. Sinha, "Non-uniform transmission lines as impedance transformers," *Proc. IEE (London)*, vol. 103, pt. B, pp. 166-172, March 1956.
- [3] N. Marcuvitz, *Waveguide Handbook*. New York: McGraw-Hill, 1951, ch. 5, pp. 307-308.
- [4] J. S. Field, private communication.

Correction

“Multiple-Idler Parametric Amplifiers”

R. L. Ernst, author of the above paper, which appeared on pp. 9-22 of the January 1967, issue of this TRANSACTIONS, has called the following to the attention of the Editor.

On page 10:

In (5), the terms $S_1^*/j\omega_1$ and $S_1^*/j\omega_2$ should have been preceded by minus signs.

On page 11:

Q_1 should have been positive, and Q_k is valid only for k greater than one.

On page 13:

The first term in the equation preceding (17) should have read $2\xi_2\omega_s\omega_p^2$.

The derivation for noise temperature in (20) assumes S_1 is real; i.e., $S_1 = S_1^* = |S_1|$. This can be done by choosing the angle of pumping properly.

On page 14:

Equation (22) should have read

$$\omega_p = \frac{1}{2} \frac{\sqrt{\omega_s^2 + m_1^2\omega_c^2}}{\xi_1} + \frac{(3\xi_1 - 2)}{4\xi_1} \omega_s + \frac{1}{4\xi_1} \sqrt{[2\sqrt{\omega_s^2 + m_1^2\omega_c^2} + (\xi_1 - 2)\omega_s]^2 - 8 \frac{\xi_1}{\xi_2} m_1^2\omega_c^2}.$$

In the equation following (23), the term

$$\xi_1 \left(\frac{m_1\omega_c}{\omega_1} - \frac{m_1\omega_c}{\omega_2} \right) \left[\frac{m_1^3\omega_c^3}{\omega_s^2\omega_1} + \frac{m_1^3\omega_c^3}{\omega_s\omega_1\omega_2} + \xi_1 \left(\frac{m_1\omega_c}{\omega_1} - \frac{m_1\omega_c}{\omega_2} \right) \right]$$

should have been raised to the $\frac{1}{2}$ power.

On page 17:

In the equation for noise temperature, the denominator should have been multiplied by R_s .

On page 21:

The first equality of (61) should have read

$$b_{33} = a_{33} - \frac{a_{34}}{b_{41}} a_{43}.$$

Equation (65) should be identical to (8).